
©Oliver Nichols, 2024 and Beyond

OWASP Top 10 Cheat Sheet
1. Broken Access Control

Frequency: More occurrences than any other category.

2. Cryptographic Failures

Users having the ability to perform unauthorized

actions, such as

 Reading, modifying, or deleting information

 Performing business functions

Best Practices

 Proper Access Control

o Access control in server-side code!

o Deny by default

o Principle of least privilege

o Reuse access control mechanisms

o Enforce record ownership

o Invalidate sessions after logout

 Configuration

o Minimize CORS usage

o Disable directory listings

o Keep file metadata (i.e., .git) and backup

files outside of web root

 Log access failures with alerts upon repeated

failures

 Apply API rate limiting to mitigate automated

attacks

Common Vulnerabilities

 Missing access controls

 Insecure Direct Object References (IDOR)

 HTTP verb tampering

 JWT or cookie tampering

 CORS allowing API access to untrusted origins

Data protection in transit and at rest.

Best Practices

 Identify sensitive/protected data

 Apply required controls

 Discard sensitive data as soon as possible

 Encrypt sensitive data at rest

 Use up-to-date algorithms, protocols, and keys

 Use proper key management

 Encrypt in transit and enforce it (HTTP Strict

Transport Security)

 Disable caching of sensitive data

 Store passwords using strong adaptive and salted

hashing functions

 Use a Cryptographically secure pseudo random

number generator for Initialization Vectors (IVs)

 Use an Initialization Vector (IV) only once

 Use Authenticated Encryption (i.e. HTTPS)

 Ensure good seed is used for cryptographic

randomness. Modern APIs do not require developers

to seed the CSPRNG.

 Avoid deprecated functions (i.e. MD5, SHA1, PKCS

number 1 v1.5)

 Independently verify effectiveness

©Oliver Nichols, 2024 and Beyond

3. Injection

Attack varies by interpreter.

Applies to

 SQL

 NoSQL

 OS commands

 HTTP/JavaScript (XSS)

 XML External Entity (XXE)

 And more

4. Insecure Design

Also see the

OWASP Software Assurance Maturity Model (SAMM).

When untrusted user input is passed and parsed by an

interpreter.

Best Practices

 Don't trust user input

 Use a parameterized interface

 Sanitization

o Prefer server-side "allow list" validation

(define what IS allowed)

o Otherwise, use deny list validation or

escape special characters specific to the

interpreter(s)

 SQL `LIMIT` can help mitigate disclosure when

SQL injection is successful

Broad category for "missing or ineffective control

design" with design being the key focus.
Best Practices

 Define security requirements

(confidentiality, integrity, availability)

 Establish a Secure Development Lifecycle

 Utilize secure design patterns and reference

architectures

 Integrate Threat Modeling into refinement

sessions (or similar sessions)

o Look for changes in data flows, access

control, or other security controls

o Document results

o Learn

o Offer positive incentives

 Incorporate security in user stories

o Create automated security tests

o Test that all critical flows are resistant to

the threat model

 Segregate tenants robustly

 Limit resource consumption

Common Weakness
Enumerations

 CWE-209: Generation of Error Message Containing

Sensitive Information

 CWE-256: Unprotected Storage of Credentials

 CWE-501: Trust Boundary Violation

 CWE-522: Insufficiently Protected Credentials

https://owaspsamm.org/model/
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/256.html
https://cwe.mitre.org/data/definitions/501.html
https://cwe.mitre.org/data/definitions/522.html

©Oliver Nichols, 2024 and Beyond

5. Security Misconfiguration

6. Vulnerable and Outdated Components

Any gaps in management (configuration, updates, lack

of removal) of software leading to vulnerabilities.
Best Practices

 Dev/Prod parity

o All environments (Dev, QA, Prod) should be

as identical as possible

 Remove unused software / features

 As part of the patch management process,

review/update any configurations based on

security notes/updates.

 Employ a segmented application architecture

o Cloud security groups (ACLs)

 Use HTTP security headers

 Use an automated process to verify

effectiveness and settings in all environments

Common Issues

 Lack of security hardening

 Improperly configured permissions on cloud services

 Unnecessary features enabled/installed

 Default accounts

 Verbose error handling

 Out-of-date software

Avoiding vulnerabilities through dependencies.

You Are Likely Vulnerable If

 If you do not know the versions of all components you

directly use (including nested dependencies)

 If any software is vulnerable, unsupported, or out-of-

date

 If you do not scan for vulnerabilities regularly and

subscribe to security bulletins related to the

components you use

 If you don't fix or upgrade in a timely fashion. (aka.

monthly/quarterly patching)

 If you do not secure the components' configurations

Best Practices

 Remove unused dependencies and software

 Continuously inventory versions of software

 Subscribe to security bulletins for components

in use

 Prefer signed packages from official sources

 Monitor for components that are

unmaintained

©Oliver Nichols, 2024 and Beyond

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

One of the highest weighted impacts.

Without sufficient integrity checks, ingested data or updates

could result in malicious code execution.

Confirming user identities, authentication, and session

management.

Common Weaknesses

 Allow automated attacks (i.e., credential stuffing)

 Allow brute force attacks

 Allow weak passwords

 Use weak credential recovery like question-answer

challenges

 Plaintext, encrypted, or weak hash password stores

 Missing 2FA

 Exposing session identifier in URL

 Session identifier reuse

 Failing to invalidate session IDs (logout, etc.)

Best Practices

 Where possible, implement 2FA

 Do not deploy any default accounts

 Check passwords against the top 10,000

worst passwords list

 Good password length, complexity, rotation

 Good account/credential messages to avoid

account enumeration

o Give the same message for successful and

unsuccessful attempts

 Increasingly delay login on multiple failed

attempts

 Alert admins on multiple failed logon

attempts

 Good session management

Ensuring app, plugins, etc. come from trusted sources. Best Practices

 Use digital signatures to verify software/data

 Use trusted repositories. Consider hosting an

internal vetted repository.

 Use a supply chain security tool to ensure

dependencies do not have vulnerabilities.

 Have a review process for code and

configuration changes to mitigate

introduction of malware

 Protect build and deploy processes within the

CI/CD pipeline with proper segregation,

configuration, and access control

 Perform integrity checks on unsigned or

unencrypted serialized data

©Oliver Nichols, 2024 and Beyond

9. Security Logging and Monitoring Failures

The following transactions should be logged:

 Logins

 When rate limits are exceeded

 High-value transactions

 Input validation failures

10. Server Side Request Forgery (SSRF)

Ensuring that attacks can be detected and responded

to.
Best Practices

 Ensure that logs have the following

o Clear message

o Sufficient user context

o Stored long enough to analyze malicious

activity

o Easily ingestible for log management

solutions

o Encoded correctly to prevent injections

 Automated alerts of suspicious activity

 Quick response to alerts

 Utilize an incident response and recovery

plan

Potential Issues from SSRF

 Exploiting trust relationships to access other internal

systems (revealing info)

 Connecting to external systems

(potentially leaking auth credentials)

 Could result in arbitrary command execution

When untrusted user input becomes part of fetching

remote resources and causes the server-side

application to make requests to an unintended

location.

Best Practices

 Network Defenses

o Separate networks and services (treat the

server as "untrusted" to mitigate impact)

o "Deny by default" firewall or network

access control rules

o Establish ownership and lifecycle for

firewall rules

o Log all accepted and blocked network

flows on firewalls

 Application Layer Defenses

o Sanitize and validate client data on server

o Use a Positive Allow list

o Do not send raw responses to clients

o Disable HTTP redirections

