OWASP Top 10 Cheat Sheet

1. Broken Access Control

Users having the ability to perform unauthorized
actions, such as

e Reading, modifying, or deleting information
e Performing business functions

Frequency: More occurrences than any other category.

/
o Common Vulnerabilities

e Missing access controls

e Insecure Direct Object References (IDOR)

e HTTP verb tampering

e JWT or cookie tampering

e CORS allowing API access to untrusted origins

A

N

2. Cryptographic Failures

/ O Best Practices \

e Proper Access Control

o Access control in server-side code!
Deny by default
Principle of least privilege
Reuse access control mechanisms
Enforce record ownership

o Invalidate sessions after logout
e Configuration

o Minimize CORS usage

o Disable directory listings

o Keep file metadata (i.e., .git) and backup

files outside of web root

O O O O

e Log access failures with alerts upon repeated
failures
e Apply API rate limiting to mitigate automated

K attacks

Data protection in transit and at rest.

¢ Identify sensitive/protected data

e Apply required controls

e Discard sensitive data as soon as possible

e Encrypt sensitive data at rest

e Use up-to-date algorithms, protocols, and keys

e Use proper key management

e Encrypt in transit and enforce it (HTTP Strict
Transport Security)

e Disable caching of sensitive data

e Store passwords using strong adaptive and salted
hashing functions

0 Best Practices

~

Use a Cryptographically secure pseudo random
number generator for Initialization Vectors (1Vs)

Use an Initialization Vector (IV) only once

Use Authenticated Encryption (i.e. HTTPS)

Ensure good seed is used for cryptographic
randomness. Modern APls do not require developers
to seed the CSPRNG.

Avoid deprecated functions (i.e. MD5, SHA1, PKCS
number 1 v1.5)

Independently verify effectiveness

J

©Oliver Nichols, 2024 and Beyond

3. Injection

When untrusted user input is passed and parsed by an / 0 Best Practices \

interpreter.

e Don't trust user input
e Use a parameterized interface

Attack varies by interpreter. e L
e Sanitization

Applies to o Prefer server-side "allow list" validation
(define what IS allowed)
e SQL o Otherwise, use deny list validation or
e NoSQL escape special characters specific to the
e 0Scommands interpreter(s)
e HTTP/JavaScript (XSS) e SQL "LIMIT" can help mitigate disclosure when
e XML External Entity (XXE) SQL injection is successful

e And more \ j

4. Insecure Design

Broad category for "missing or ineffective control / O Best Practices \

design" with design being the key focus.

e Define security requirements

Also see the (confidentiality, integrity, availability)

OWASP Software Assurance Maturity Model (SAMM). * Establish a Secure Development Lifecycle

e Utilize secure design patterns and reference
architectures

/ \ e Integrate Threat Modeling into refinement
o Common Weakness sessions (or similar sessions)
Enumerations o Look for changes in data flows, access
control, or other security controls
e CWE-209: Generation of Error Message Containing o Document results
Sensitive Information o Learn
e CWE-256: Unprotected Storage of Credentials o Offer positive incentives
e CWE-501: Trust Boundary Violation e Incorporate security in user stories
e CWE-522: Insufficiently Protected Credentials o Create automated security tests
o Test that all critical flows are resistant to

k / the threat model

e Segregate tenants robustly

\o Limit resource consumption /

©Oliver Nichols, 2024 and Beyond

https://owaspsamm.org/model/
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/256.html
https://cwe.mitre.org/data/definitions/501.html
https://cwe.mitre.org/data/definitions/522.html

3. Security Misconfiguration

Any gaps in management (configuration, updates, lack / O Best Practices \

of removal) of software leading to vulnerabilities.

Dev/Prod parity

o All environments (Dev, QA, Prod) should be
as identical as possible

Remove unused software / features

As part of the patch management process,

review/update any configurations based on

security notes/updates.

Employ a segmented application architecture

o Cloud security groups (ACLs)

Use HTTP security headers

Use an automated process to verify

effectiveness and settings in all environments

/

6. Vulnerable and Outdated Components

Avoiding vulnerabilities through dependencies.

O Best Practices \

Remove unused dependencies and software
Continuously inventory versions of software
Subscribe to security bulletins for components
in use

Prefer signed packages from official sources
Monitor for components that are
unmaintained

©0O0liver Nichols, 2024 and Beyond

7. ldentification and Authentication Failures

Confirming user identities, authentication, and session / O Best Practices \

management.

f o Common Weaknesses \

e Allow automated attacks (i.e., credential stuffing)

e Allow brute force attacks

e Allow weak passwords

e Use weak credential recovery like question-answer
challenges

e Plaintext, encrypted, or weak hash password stores

e Missing 2FA

e Exposing session identifier in URL

e Session identifier reuse

e Failing to invalidate session IDs (logout, etc.) \

A 4

8. Software and Data Integrity Failures

Where possible, implement 2FA

Do not deploy any default accounts

Check passwords against the top 10,000

worst passwords list

Good password length, complexity, rotation

Good account/credential messages to avoid

account enumeration

o Give the same message for successful and
unsuccessful attempts

Increasingly delay login on multiple failed

attempts

Alert admins on multiple failed logon

attempts

Good session management

/

Ensuring app, plugins, etc. come from trusted sources. / O Best Practices \

One of the highest weighted impacts.

Without sufficient integrity checks, ingested data or updates
could result in malicious code execution.

Use digital signatures to verify software/data
Use trusted repositories. Consider hosting an
internal vetted repository.

Use a supply chain security tool to ensure
dependencies do not have vulnerabilities.
Have a review process for code and
configuration changes to mitigate
introduction of malware

Protect build and deploy processes within the
CI/CD pipeline with proper segregation,
configuration, and access control

Perform integrity checks on unsigned or

unencrypted serialized data /

©Oliver Nichols, 2024 and Beyond

9. Security Logging and Monitoring Failures

Ensuring that attacks can be detected and responded K O Best Practices \

to.

e Ensure that logs have the following
o Clear message

The following transactions should be logged: o
o Sufficient user context

e Logins o Stored long enough to analyze malicious
e When rate limits are exceeded activity

e High-value transactions o Easily ingestible for log management

e Input validation failures solutions

o Encoded correctly to prevent injections
e Automated alerts of suspicious activity
e Quick response to alerts
e Utilize an incident response and recovery

N)

10. Server Side Request Forgery (SSRF)

When untrusted user input becomes part of fetching K O Best Practices \

remote resources and causes the server-side

application to make requests to an unintended e Network Defenses
location. o Separate networks and services (treat the

server as "untrusted" to mitigate impact)

o "Deny by default" firewall or network
access control rules

o Establish ownership and lifecycle for
firewall rules

o Log all accepted and blocked network
flows on firewalls

e Application Layer Defenses

o Sanitize and validate client data on server

o Use a Positive Allow list

o Do not send raw responses to clients

o

k / k Disable HTTP redirections J

p
0 Potential Issues from SSRF

e Exploiting trust relationships to access other internal
systems (revealing info)

e Connecting to external systems
(potentially leaking auth credentials)

e Could result in arbitrary command execution

©Oliver Nichols, 2024 and Beyond

